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Summary. The 2Sg (dl°$1), 2Og (d9s2), 2P u (dl°pl), 2"4{F, P}u (d9slp 1) states of  
copper as well as the ~Sg (d 1°) state of the positive copper ion are studied by ab 
initio methods. Relativistic wavefunctions are determined variationally solving a 
one-component no-pair equation. This approximation makes it possible to treat 
all the states in a common set of  orbitals. It is found that differential relativistic 
effects for the excitation energies are independent of  the one-particle basis 
employed. The first-order perturbation estimate using the mass-velocity and 
Darwin operators depends critically on the description of  the 3s and 3p core 
electrons. Among the various one-particle sets tested, 2Dg orbitals, with the 
(4s, 4p) near-degeneracy effects included in the orbital optimization step, are 
most appropriate for the correlation treatment. They give an error of 0.3 eV for 
the 2Sg-2Dg separation only slightly inferior to our best result employing parent 
orbitals for both states. All other states agree with experiment to within 0.2 eV. 
The first-order spin-orbit splitting of  the 2Dg state ( - 2 0 0 6  cm -1) is in excellent 
agreement with the experimental value. 
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1. Introduction 

Several electronic states are known to be involved in reactions of  atomic copper 
with other atomic or molecular species. In its atomic 3d~°4s 1 ground state, 
copper is ideally suited for binding to a single monovalent ligand such as 
hydrogen or the halogen atoms. These CuX compounds have more or less ionic 
1S ÷ ground states with predominately d 1° character [ 1-  3]. The first excited states 
of  Cull ,  on the other hand, are best described by the interaction of  hydrogen 
with copper in a 3d94s14p I configuration [4]. States with d 9 character are also 
involved if a bond to a bivalent species like oxygen or sulfur is formed [5]. In 
side-on reactions with diatomic molecules like H2 and 02, where two bonds have 
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to be formed simultaneously, the 2P u (3dl°4p 1) has been shown to be especially 
active in the initial process [6-9] followed by an avoided crossing to a potential 
surface correlating with the 2Dg (3d94s 2) state of copper. One prerequisite for a 
correct computational description of the aforementioned reactions is to obtain 
the atomic energy splittings with sufficient accuracy. For states with different d 
occupations this is very difficult due to the large amount of correlation energy 
contained in the 3d shell. Considerable errors are found for the ZDg-2Sg 
separations at the single reference correlated level [10-13]. 

Focusing on properties of molecular ground states and perhaps a few of the 
low-lying excited states in transition metal compounds, multi-configurational 
self-consistent field (MCSCF) orbital optimizations for each state followed by a 
multi-reference configuration interaction (MRCI) or an averaged coupled pair 
functional (ACPF) treatment have proven to give very reliable results [14-16]. 
If, however, transition moments and off-diagonal coupling matrix elements are 
required, the use of a common one-particle basis is mandatory. One of the goals 
of the present work is to find a common one-particle basis which allows one to 
describe the aforementioned electronic states of neutral and ionic copper in 
subsequent electron correlation treatments without significant loss of accuracy. 

At the end of each transition metal row relativistic effects play an important 
role [17]. An easy and cheap way to account for relativistic effects in all-electron 
calculations is the use of the mass-velocity and Darwin (MVD) operators [18] in 
first-order perturbation theory. For the first and second transition-metal row, 
this approach was shown [17, 19] to give atomic energy separations in satisfac- 
tory agreement with Dirac-Fock splittings. In the past, it has been successfully 
applied to estimate the relativistic changes of binding energies, equilibrium 
distances, excitation energies etc. in a large variety of molecular systems. 
Problems with this approach do occur, however, if a correlation calculation on 
a specific state is performed in an orbital basis of another state or if frozen core 
orbitals are employed in the orbital optimization step. On the basis of a double 
perturbation theory formalism, Schwarz et al. [20] noted that there might be 
significant relativistic contributions to electronic excitation energies due to the 
core orbitals. In frozen core calculations on various states of atomic palladium, 
Blomberg and Wahlgren [21] found that the relativistic correction was severely 
underestimated in a first-order treatment. They also showed at the SCF level that 
the error is decreased to a large extent when a no-pair operator (in this case with 
free-particle projection) is employed variationally. In this work we will use a 
more advanced no-pair theory containing projectors to the solutions for an 
electron in an external Coulomb field [22-25]. The question arises whether it will 
be possible to obtain relativistic corrections in a basis of common orbitals 
comparable to those found when each state is calculated in its own set of 
orbitals. 

2. Computational details 

2.1. Methods 

Relativistic effects are accounted for in the calculations by solving a one-compo- 
nent spin-free approximation to the no-pair equation. Alternatively, for test 
purposes the well-known mass-velocity and Darwin (MVD) operators [18] have 
been used in first-order perturbation theory. The no-pair operator employed 
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variationally in this work contains external field projectors for the one-particle 
terms while the electron-electron interaction is described by the unmodified 
Coulomb operator. The theoretical background of the no-pair equations [22-25] 
and the approximations made in its implementation in electronic structure code 
[26, 27] have been discussed in detail elsewhere. The momentum-dependent 
operators, which occur in the formalism, are evaluated in the basis of linear 
combinations of fourier-transformed gaussians which diagonalize p2/2m. To 
improve the description of momentum space, contracted basis sets of gaussian 
functions are resolved into primitives in this step. 

The one-particle bases for the 2Sg or 2Dg states of copper are determined either 
by the SCF, MCSCF [28], or natural orbital (NO) procedures. The choice of the 
configuration spaces for the MCSCF calculations is discussed in detail in Sect. 2.2. 

A variety of methods was employed to account for electron correlation. 
Single-reference calculations in the basis of parent SCF orbitals were performed 
using the direct singles and doubles configuration interaction (SDCI) procedure 
[29] or the size consistent (modified) coupled pair functional (CPF) [30] and 
MCPF [31] methods. Two multi-reference SDCI approaches have been applied 
in this work: the direct externally contracted CI (CCI) [32] and the conventional 
MRD-CI [33] with energy extrapolation. Both methods make use of second- 
order perturbation theory to estimate coefficients or energy contributions of 
configuration state functions (CSFs) not included in the variation process. 

Spin-orbit coupling matrix elements were evaluated for MRD-CI wave- 
functions [34] in first-order perturbation theory employing the one- and two- 
particle Breit-Pauli operators [35]. 

2.2 Details of the calculation 

All AO basis sets employed in this work include the 14s9p5d (2Sg) primitive set 
of Wachters [36], augmented by the diffuse d function given by Hay [37]. In basis 
A as s function with exponent 0.33 [38], two p polarization functions [36] with 
scaling factor ~ and three contracted f functions [38] were added. The totally 
symmetric component of the d- and the p-type combinations of the f functions 
are discarded. The contraction coefficients were determined in atomic non- 
relativistic or no-pair SCF calculations on (d~°s 1) 2Sg, respectively. In the 
nonrelativistic calculations a 6111 l 11111/3311111/3111/211 contraction scheme 
was applied. Because of the large difference of the 3p orbital expansion in the (d 9) 
and (d ~°) states, in the no-pair treatment the contraction was changed to 
6111111111]511111113111/211. 

The most diffuse p functions in AO basis A are used to both describe the 
polarization of the 4s orbitals and the 4p orbitals in the excited atomic states. 
Optimal exponents for these states were determined at the nonrelativistic CI level. 
The smallest p exponent contained in the AO bases described above (0.069299), 
is only slightly larger than the optimal 4p exponent (0.056) for the (d~°p ~) 
occupation; the p orbitals of the different space and spin couplings of the (d9s ~p 1) 
configuration have very similar exponents, with a mean value of 0.089. Basis B 
contains these two optimized 4p functions in addition to the 14s9p6d set and two 
primitiveffunctions with exponents 2.89 and 0.4. As the largest relativistic effects 
emerge from the s shells, for test purposes only the p and d sets were contracted, 
yielding a [ 14s, 6p, 4d, 2f] set. In this case all cartesian components of the d and 
f functions were retained. 
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The single-reference calculations were performed in the basis of SCF orbitals 
of the respective state. The first of the MCSCF configuration spaces is of 
complete active space (CAS)-type. In case of the 2Dg state it consists of all 
configurations of proper space- and spin-symmetry that can be generated by 
distributing two electrons in the 4s and 4p orbitals and is denoted as CAS(s, p). 
This level of treatment corresponds to an SCF calculation for the 2Sg state. The 
second type of active spaces comprises the 4s, the 3d and 3d' orbitals but in this 
case the configurations space was restricted to CSF's containing a fixed number 
of electrons in a, 7r, and ~ subspaces. This active space will be designated as 
CASll  and is used for the 2Sg calculation. Addition of the important s z ~p2  
excitations for 2Dg is beyond the capacities of our present version of the 
CASSCF program [28]. Instead, we take the s and d orbitals from the CAS(d, d') 
and the p and f orbitals from CAS(s, p) calculations. This type of orbitals, which 
has already been successfully employed for the negative copper ion [39], is 
denoted as CASmix. 

In cases in which the configuration space for a CI expansion of an electronic 
state is spanned by one-particle functions that have been optimized for that 
particular state (parent orbital calculations), CI reference configurations can be 
selected according to their weights in the underlying MCSCF calculation. All 
CSF's with coefficients larger than 0.02 in the corresponding (MC)SCF expan- 
sions were included in the CI reference spaces. If a common set of orbitals is 
employed for all states other criteria for choosing the reference sets must be 
devised. In this case, the reference sets for the MRD-CI calculations using AO 
basis B consisted of the respective SCF configuration, augmented by s--*s', 
p ~p ' ,  and d ~ d" single excitations to account for relaxation. For the 2Dg state 
also the important s 2 ~ p  2 excitations were included. Slightly larger reference 
sets, describing valence-orbital relaxation also by virtual orbitals with higher 
Fock energies, were employed using AO basis C. Regarding the d9s lpl occupa- 
tion several cartesian components exist in each of the irreducible representations 
of the D2h subgroup with ungerade symmetry. In this case all the components 
that transform according to a specific irreducible representation of Dzh are given 
as reference configurations, augmented by s ~ s ' ,  p ~p ' ,  and d ~ d "  single 
excitations. Maintaining symmetry in the generated CI space for the d9s lpl state 
requires to include configurations in the reference set with symmetries other than 
that of the desired CI wavefunction. For technical reasons, this is not possible in 
the present version of the MRD-CI program [33]. These restrictions in the 
reference space cause angular symmetry breaking and lead to small, but non- 
negligible interaction matrix elements between Pu, Du, and Fu states. 

The threshold for configuration selection in the MRD-CI procedure was set 
to 5 x 10-6EH if not stated otherwise. Single excitations from the leading 
reference configuration are always included, irrespective of their energy contribu- 
tion. 

3. Results and discussion 

3.1. SCF calculations 

We have checked the accuracy of our relativistic approach by comparing orbital 
energies and radial expectation values obtained from no-pair SCF calculations 
with numerical Dirac-Fock (DF) values [40]. The orbital energies calculated for 
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the 2Sg state in the unc0ntracted 15sl lp6d AO basis and the corresponding DF 
orbital energies are given in Table 1. Excellent agreement between the two sets of 
data is observed. The largest deviation occurs for the 3d orbital (0.35%) and is 
probably due to AO basis set deficiencies. A more detailed analysis is possible for 
the radial expectation values ( r -2) ,  ( r ) ,  and (r2), which probe the orbital 
shapes in different spatial regions. It should be noted, however, that the 
expectation values calculated from wavefunctions expressed in a basis of two- 
component spinors are not directly comparable to expectation values obtained in 
the four-component (Minkowski) representation but rather require transforma- 
tion of the corresponding operators by means of a Douglas-Kroll transforma- 
tion [23], analogous to transformation of operators in Foldy-Wouthuysen 
theory [35]. The expectation values obtained from a nonrelativistic LCAO-SCF 
calculation (Table 2) are found to be in very good agreement with the numerical 
Hartree-Fock values by Desclaux [40]. This is also true for the relativistically 
calculated expectation values ( r )  and (r 2) which have their largest weights in 
the outer orbital region and describe the bonding characteristics. ( r -2) ,  which 
emphasizes the inner orbital region, is in satisfactory agreement with the DF 
values for the p and d shells, while all the s orbitals are somewhat too compact 
in this regime. The difference arises probably from the different treatments of the 
nucleus. In DF theory [40], the nucleus is assumed to be finite as opposed to a 
pointlike nucleus in the current no-pair equations. 

The radial extents of the (3d94s 2) 2Dg SCF orbitals, also displayed in Table 
2, show remarkable differences to those of (3dl°4sl) 2Sg. As expected, the d shell 
is more compact for the d 9 occupation than for d ~°. As a consequence of the 
presence of the d hole, also the 3s and 3p shells in the 2Dg state are slightly more 
contracted than the corresponding 2Sg orbitals. Since the 4s orbital is doubly- 
occupied in the 2Dg state, one would generally expect it to be more diffuse than 
the singly-occupied 4s orbital in the 2Sg state. The less complete nuclear shielding 
by the d 9 shell prevails, however, and leads to a considerably more dense electron 
distribution in the 4s orbital. 

As the energy changes due to the kinematic relativistic effects are largest for 
the innermost electrons it is not clear from the beginning whether the usual AO 
basis set contraction procedure will work in case of no-pair calculations. As 
already mentioned, in the integral evaluation step the contraction has to be 
resolved to improve the matrix representation of the momentum operator. 

Table 1. S C F  orb i t a l  energies  [E,v] fo r  the  (dl°sl) 2Sg a n d  (d9s 2) 2Dg 
s ta tes  o f  c o p p e r  o b t a i n e d  in bas is  A 

O r b i t a l  2Sg, D F  [40] 2Sg, n o - p a i r  2Dg, n o - p a i r  

this  w o r k  th is  w o r k  

l s  - 3 3 2 . 6 5 4 5  - 3 3 2 . 4 6 7 5 6  - 3 3 2 . 7 0 0 6 2  

2s - 4 1 . 6 7 1 8 4  - 4 1 . 6 6 5 1 7  - 4 1 . 9 2 2 9 4  

3s - 5 . 1 5 6 5 0  - 5 . 1 5 8 4 9  - 5 . 4 0 1 4 8  

4s  - 0 .24477  - 0 .24455 - 0 .29083 

2p - 35 .81072 a - 35 .81157 - 36 .06470  

3p - 3 .36288 a - 3.36661 - 3 .59255 

3 d  - 0 .47973 a - 0 .47805 - 0 .71979  

a we igh ted  a v e r a g e d  over / "  = l + 1/2 a n d  l -  1/2 c o m p o n e n t s  
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Table 2. Radial expectation values of atomic SCF orbitals for (dl°s 1) 2Sg and (d9s 2) 2Og (AO basis 
B) 

2Sg, numerical HF [40] 2Sg, this work 2Dg, this work 

(r-2)[affZ] 

Orbital relat, nonrel relat, nonrel relat, nonrel 

ls 1750.0 1635.5 1897.1 1634.0 1897.1 1634.0 
2s 173.96 158.29 188.74 158.27 188.73 158.26 
3s 25.405 23.054 27.503 23.069 27.797 23.329 
4s 0.9131 0.8081 0.9852 0.8151 1.3193 1.1059 
2p 53.497 a 51.788 53.084 51.804 53.076 51.796 
3p 7.4248 a 7.1668 7.3999 7.1887 7.4902 7.2801 
3d 2.6861 a 2.7023 2.6711 2.6872 2.8681 2.8845 

(r)[ao] 
Orbital relat, nonrel relat, nonrel relat, nonrel 

ls 0.0521 0.0529 0.0518 0.0529 0.0518 0.0529 
2s 0.2339 0.2375 0.2339 0.2375 0.2339 0.2375 
3s 0.7128 0.7228 0.7130 0.7227 0.7090 0.7184 
4s 3.2615 3.3311 3.2511 3.3141 2.9249 2.9678 
2p 0.2061 a 0.2075 0.2058 0.2075 0.2058 0.2075 
3p 0.7530 ~ 0.7577 0.7522 0.7573 0.7460 0.7509 
3d 0.9976 a 0.9912 0.9975 0.9915 0.9258 0.9206 

(rZ)[a~l 
Orbital relat, nonrel relat, nonrel relat, nonrel 

ls 0.0037 0.0037 0.0036 0.0037 0.0036 0.0037 
2s 0.0646 0.0665 0.0646 0.0665 0.0646 0.0665 
3s 0.5872 0.6035 0.5876 0.6034 0.5801 0.5954 
4s 12.552 13.084 12.443 12.907 10.061 10.354 
2p 0.0521 a 0.0528 0.0520 0.0527 0.0520 0.0527 
3p 0.6704 ~ 0.6783 0.6692 0.6780 0.6567 0.6648 
3d 1.3556 a 1.3351 1.3457 1.3272 1.1250 1.1103 

a weighted average over j = 1 + 1/2 and l - 1/2 components 

Employing the no-pair operator in the uncontracted 15s 1 lp6d basis, 2Dg is 
located 0.07 eV below 2Sg at the SCF level, close to the numerical relativistic 
(Cowan-Griffin) Har t ree-Fock results of Martin et al. (0.06 eV) [19]. Contract- 
ing this basis to [9s7p4d] functions has almost no effect on the excitation energy. 
The contraction error in the relativistic calculation is 0.02 eV, comparable to the 
nonrelativistic case for which an error of 0.01 eV was found. If  no equivalence 
restrictions are imposed the symmetry in the 2Dg wavefunction is broken and the 
energy of this state is lowered. This error should, however, be remedied in the 
subsequent electron correlation treatments. Due to this symmetry breaking, both 

• in relativistic and nonrelativistic calculations the energy of 2Dg is lowered by 
0.04 eV in the 15sl lp6d basis and by 0.07 eV if the f functions are added. The 
no-pair SCF excitation energy in the contracted [9s7p4d3f] basis set, finally, 
amounts to -0 .12  eV not imposing equivalence restrictions. 
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3.2. Parent orbital calculations 

In this section we discuss the influence of various electron correlation treatments 
on the 2Sg-2Dg splitting at the nonrelativistic level. Throughout the respective 
parent orbitals are employed. For being able to compare our results with 
experiment, we have added the no-pair correction (0.43 eV) to the J-averaged 
experimental energy separation of 1.49 eV [41]. The nonrelativistic experimental 
reference amounts then to 1.92 eV. 

The calculated excitation energies of the 2Dg atomic state are compiled in 
Table 3. Let us first concentrate on the single-reference calculations in which 
only 11 valence electrons are correlated. The 2Sg-2Dg splitting is found to be 
nearly independent of the electron correlation approach. The energy separations 
resulting from the coupled pair functional methods (CPF and MCPF) are 
slightly smaller than the SDCI values while the estimate of higher excitation 
contributions by means of the Davidson formula [42] has almost no differential 

Table 3. Summary  of  the nonrelativistic 2Sg - 2 D g  excitation energies [eV] using 
AO basis A 

Method Orbitals 2 Sg - 2 D g 

single-reference calculations 
SDCI 
SDCI + DC a 
MRD-CI ( I )  
MRD-CI(1)  + DC  a 
CCI 
CCI + DC a 
CPF 
M C P F  
MCPF(3s ,  3p CV b) 
MCPF(3s ,  3p) 
MCPF  

multi-reference calculations 
M R D - C I  
M R D - C I  + DC a 
MRD-CI  
M R D - C I  + DC ~ 
M R D - C I  
M R D - C I  + DC ~ 
M R D - C I  
M R D - C I  + DC ~ 
M R D - C I  
M R D - C I  + DC" 

SCF 1.56 
1.55 
1.53 
1.50 
1.36 
1.34 
1.50 
1.51 
1.54 
1.48 

frozen core SCF ¢ 1.57 

SCF 1.39 
1,51 

SCF/CAS(s,  p) d 1.27 
1,44 

CAS11/CASmix d 1.56 
1.55 

INO1 1.63 
1.63 

INO2 1.65 
1.65 

nonrelativistic experimental reference e 1.92 

a including Davidson correction or its multireference analog 
b configurations contain at most  1 hole in the 3s and 3p shells 
c argon core frozen from an SCF calculation on the average o f  2Sg and 2Dg 
d orbital designation see Sect. 2.2 
e weighted average over fine-structure levels 1.49 eV [41] with a relativistic correc- 
tion of  0.43 eV added 
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effect. The extrapolated energies for the truncated single-reference calculations, 
denoted as MRD-CI(1) in Table 3, differ only slightly from the corresponding 
SDCI results. Because of the somewhat lower correlation energies and the higher 
weight of the reference configurations in the truncated CI expansions, the 
Davidson correction to the MRD-CI energy is underestimated. At this level, the 
MRD-CI(1) result deviates from the Davidson corrected SDCI value by 0.05 eV. 
Larger deviations, especially for the ground state energy, are found for the 
externally contracted CI (CCI) approach. In this method, the relative CI 
expansion coefficients are kept fixed for all CSF's with a common structure in the 
internal space [32]. The large error arises from the extraordinarily small number 
of free variational parameters in this case (73 for 2Sg). In calculations, in which 
the number of internal walks and free parameters is larger, the approximations 
are less aggravating [14]. Disregarding the CCI results, the nonrelativistic 
excitation energies range from 1.50 to 1.56 eV. Similar to the situation for the 
d8-d 9 and d9-d 1° splittings in atomic nickel only a slight improvement on the 
2Sg-2Dg energy separation with an AO basis set saturation is observed at the 
SDCI level. Using a [7s6p4d2flg] ANO basis, Partridge [43] obtained an SDCI 
value of 1.62 eV compared to 1.56 eV in AO basis A. The effect of further 
enlarging the AO basis at this level of correlation treatment is probably rather 
small. 

In the 2Dg state, the 3d shell is spatially closer to the 3s and 3p shells as 
compared to the 2Sg orbitals. Thus, for this state, a larger {3s, 3p}-3d correla- 
tion per d electron results. In the 2Sg state, on the other hand, the number of 
{3s, 3p}-3d electron pairs is larger. The change of the 2Sg-2Dg separation due to 
inclusion of the 3s and 3p core electrons in the correlation treatment was found 
to be negligible in previous SDCI calculations on copper [11]. The results of 
Sunil and Jordan [12], on the other hand, indicate a stabilizing effect of 3p-3d 
correlation of 0.8 eV on 2Dg when two f functions (exponents 1.8 and 0.5) are 
present in the AO basis. In absence of these polarization functions, a large 
differential effect (0.24eV) in the opposite direction was observed. Since 19 
electrons have to be correlated, the size-consistent MCPF approach should be 
more appropriate than SDCI treatments. The present MCPF calculations 
confirm the small differential effect of (3s, 3p} correlation. In this approxima- 
tion, core-valence correlation increases the 2Dg excitation energy by 0.03 eV. 
Inclusion of core-core correlation, on the other hand, stabilizes the d 9 state 
yielding a net effect of --0.03 eV on the 2Dg-2Sg separation. Thus, to a good 
approximation it should be possible to neglect {3s, 3p} correlation for valence 
excitations in copper. 

The large discrepancy of the 2Dg excitation energy at the single reference 
correlated level with experiment is very disappointing. The disagreement be- 
comes even worse if the (4s, 4p) near-degeneracy is accounted for in the 
description of 2Dg. If the 4s2~4p 2 excitations are included in the CAS and CI 
reference spaces, the deviation from experiment is raised to 0.48 eV at the 
Davidson corrected level. Similar discrepancies were obtained in the past for the 
3Fg(d8s2), 3Dg(d9sl) and lSg(dl°) energies of the neighboring nickel atom [44- 
46]. Inclusion of radial 3d ~ 3d' correlation already in the orbital optimization 
step reduced the error for the 3Dg- lag excitation to 0.14 eV [44]. The calculated 
3Fg-3Dg separation is, however, still off by 0.27 eV after Davidson correction 
[44]. In copper, 3d ~ 3d' correlation tends to favor the d-rich 2Sg state. We have 
optimized 3d' orbitals in CASSCF calculations (CAS11/CASmix) and include all 
important 3d 2 ~ 3d '2 in the reference spaces of the subsequent multi-reference CI 
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treatments. While we use the same type of CAS expansion as Bauschlicher et al. 
on the atomic states of nickel [44], we employ the conventional MRD-CI 
procedure instead of a direct multi-reference complete singles doubles CI as 
applied by these authors. The CSF selection threshold was lowered to 
5 x 10-8 E~ in this case. Starting with the CAS11/CASmix orbitals, a nonrela- 
tivistic excitation energy of 1.56 eV is obtained. The differential effect of the 
Davidson correction amounts to merely 0.01 eV. Also, on an absolute scale it is 
much smaller than for the CI calculations employing a small reference space 
because many quadruple excitations to the leading reference are already included 
in the CI expansion. Since we could not afford a full second-order CI, attempts 
were undertaken to increase the percentage of the included correlation energy by 
performing several natural orbital (NO) iterations. No further references became 
important during the iteration process. One drawback of the INO procedure is 
that the total energy is not continuously improved. The total energies for both 
states increased in the third NO iteration and therefore the iteration process was 
terminated here. After two NO iterations, the 2Sg-2Dg separation has raised to 
1.65 eV which is in error by 0.27 eV compared to the nonrelativistic experimental 
reference. The energy gain in the 2Sg-2Dg splitting during the NO iteration 
process points to the significance of higher-order terms for the differential 
correlation energy. The importance of these higher-order contributions will be 
even more pronounced in AO bases containing larger sets of polarization 
functions. 

3.3. Common orbital calculations 

In order to find a common set of orbitals which is suited for describing electronic 
states with different d occupations, we have studied various states of neutral and 
ionic copper: Cu: 2Sg (dl°sl), 2De (d9s2), 2p, (dlOpl), z.4{F ' P}u (d9slp I) and Cu+: 
1Sg (d~°). Several one-particle bases were tested in this series: 2Sg SCF orbitals, 
2Dg SCF orbitals, 2Dg CAS(s, t7) orbitals, ZSg-ZDg averaged SCF orbitals, and 
ZSg-:Dg averaged NOs. We shall discuss here only the results of the nonrelativis- 
tic calculations and postpone the discussion of the relativistic effects to the next 
section. Total energies for the (d~°s ~) zSg ground state and excitation energies for 
the higher-lying electronic states are given in Table 4. 

In this series, the lowest total energies for all states are obtained in the basis 
of 2Og (d9s 2) orbitals. While expected for the d 9 states, this is very surprising for 
the states with d ~° occupation. On an absolute scale, the total energy of the 2Sg 
ground state in the basis of 2Dg orbitals is lowered by as much as 0.33 eV as 
compared to the CI energy in the basis of 2Sg SCF orbitals. For the d 9 states, the 
dependence on the choice of one-particle set is even more pronounced. As seen 
from Table 4, the excitation energies of the d 9 states differ by up to 0.45 eV for 
the 2Sg and 2Dg based calculations. If near-degeneracy effects between the 4s and 
4p shells are included in the orbital optimization step (2De CAS(s, p)), the weight 
of the s 2 ~p2 excitations in the 2Dg CI expansion increases considerably. At the 
CI level, the excitation energy of this state drops by 0.15 eV. Accounting for 
higher than double excitations by means of the Davidson correction has a 
compensating effect; but still an energy gain of 0.09 eV relative to the 2Dg SCF 
based results is observed. The other states are affected only little by this 
procedure as seen from a comparison of their energies in the 2Dg SCF and 
CAS(s, p) bases in Table 4. 
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Two types of averaged orbitals were tested: SCF orbitals optimized for an 
equal weight of 2Sg and 2Dg exhibiting a net d population of 9.5, and averaged 
natural orbitals from an MRD-CI treatment of 2Sg and 2Dg. The results obtained 
in the averaged SCF orbital basis look very reasonable. Total energies and 
energy separations lie in between the values employing 2Sg and 2Dg orbitals, 
respectively. The NOs, on the other hand, are clearly biased towards 2Sg; 
absolute and relative CI energies in the NO one-particle set resemble closely 
those of the 2Sg orbital-based treatment. This is easily understood from the fact 
that the underlying CI calculations for generating the NOs were performed in a 
common basis of 2Sg SCF orbitals. A single NO iteration is not capable of 
overcoming the orbital bias towards 2Sg. 

To elucidate the origin of the high sensitivity of the MRD-CI energies 
with respect to the choice of one-particle bases, expectation values of the 
truncated CI expansions for several CSF selection thresholds T and extrapolated 
MRD-CI energies are compared in Table 5. At T=AT=5 × 1 0 - 6 E H ,  the 
variationally determined energy of 2S~ is lower in the basis of its own SCF 
orbitals than the corresponding value employing 2Dg SCF orbitals; for this CI 
space of selected configurations it is the (estimated) contribution of the discarded 
CSF's that reverses the energetical ordering. At the smaller threshold 
(T=AT=5 × 10-7EH), many of the formerly discarded CSF's have been 
directly included in the CI space and both variational and extrapolated CI 
energies are lower in the basis of 2Dg orbitals. While the CI eigenvalues change, 
of course, drastically with the selection threshold, the extrapolated energies 
remain fairly stable. We are thus quite confident that the effect that the CI 
energies obtained in t h e  2Dg one-particle basis are lower than those in the 2Sg 
basis is not caused artificially by the extrapolation procedure but results from the 
slow convergence of the CI expansion in the basis of the rather diffuse 2Sg SCF 
orbitals. Next, we would like to discuss possible sources of errors which could be 
responsible for the energy loss observed for the d 9 states in the basis of 2Sg SCF 
orbitals. All important single excitations of the leading configurations are 
included in the reference set. Thus, the energy increase is not due to a simple 
orbital relaxation problem. Also, as may be seen from Table 3, there is almost no 

Table 5. Nonrelativistic M R D - C I  energies [EH] of  the 2Sg and 2Og states as a function o f  the CSF 
selection threshold T (AO basis A) 

State T [E , ]  sel. CSF's  a ~ cr2~f EcI(T ) Ecy(T + A T) Ee .... Eextr. + Davb 

2SgSCF orbitals (energy offset - 1639E~) 
2Sg 5 × 10 -6 5371 0.947 .219360 .212466 .226530 .248064 
2Sg 5 x l0 -7 9333 0.946 .226209 .225552 .227082 .249020 
2Dg 5 x 10 -6 6095 0.959 .135429 .120465 .166082 .179510 
2Dg 5 × 10 -7 19809 0.955 .157685 .153366 .168271 .183055 

2DgSCF orbitals (energy offset - 1639EH) 
2Sg 5 x 10 -6 9043 0.954 .211420 .193666 .238712 .255509 
2Sg 5 × 10 -7 27246 0.952 .234233 .229611 .242119 .259790 
2Dg 5 × 10 -6 5075 0.951 .164547 .157880 .175433 .192648 
2~)g 5 × 10 -7 12684 0.950 .174068 .172741 .176211 .193778 

a The size of  a complete SDCI amounts  to 317346 CSF's  (2Sg) and 319376 CSF's (2Dg) 
b including.aa multireference analog o f  the Davidson correction 
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frozen core effect at the nonrelativistic level. An MCPF treatment based on a 
constrained SCF for 2Dg, in which the argon core was frozen to averaged 2Sg-2Dg 
orbitals but the 4s and 3d orbitals were relaxed, yields only slightly higher energies 
than the corresponding MCPF using fully optimized 2Dg SCF orbitals. This 
implies that relaxation of the valence orbitals is important for the states with d 9 
occupation but that this relaxation cannot be achieved by single excitations in the 
CI step. In the basis of 2Sg orbitals, at least triple excitations are needed to 
reorganize the valence orbitals. 

On the  basis of the experience, that the total CI energies of the d 1° states are 
lower if 2Dg SCF or CAS4 orbitals are employed as compared to 2Sg SCF orbitals, 
we have also calculated the 2Sg state using 2Dg CASrnix orbitals as one-particle 
set. To this end, the reference set determined from the 2Sg CAS 11 expansion was 
augmented by single excitations yielding a total of 31 reference configurations in 
18 active orbitals. The MRD-CI energy based on 2Dg CASmix orbitals 
( -  1639.231747 En)  is considerably higher than the energy obtained for the 2Sg 
CAS11 orbitals ( - 1639.246601 En)  using the same reference set. We conclude that 
when using this type of orbitals, in which radial 3d correlation is already accounted 
for in the CAS step, every state should be calculated in its own set of orbitals. 

Let us now turn to a comparison of AO bases A and B. Since the basis sets 
differ in many respects, we will try to analyze the differences step by step. The 
contraction of the s and p sets has no influence on the correlation energy both 
in the nonrelativistic as well as in the no-pair calculations. The additional s 
function (exponent 0.33) and the more compact outermost p functions contained 
in basis A stabilize preferentially the 2Dg state. At the nonrelativistic SDCI level, 
the differential effect on the 2Dg excitation energy due to these basis functions 
amounts to -0 .14  eV if in basis B only the proper angular momentum compo- 
nents of d and f functions are retained. The gaps in the s and p sets of basis B 
are filled, however, by the s- and p-type combinations of the cartesian d and f 
functions. Although this way of compensating basis set deficiencies saves time in 
the integral evaluation step, it cannot be recommended generally since great care 
is required to avoid linear dependencies. Apart from a systematic shift of the 2P u 
(dlOp 1) state, the excitation energies calculated in bases A and B resemble each 
other very closely. The 2Sg (dl°s 1)_2Pu (dlOpl) separation, is rather insensitive to 
both the addition of polarization functions and the choice of one-particle basis 
since there is no differential d-intrashell correlation contribution. For a proper 
description of the 4p orbital in this state a diffuse p function is required, however, 
which is not present in basis A. 

3.4. Relativistic effects 

Another test for the quality of a calculated wavefunction is the evaluation of 
properties other than the energy. In the spectrum of the copper atom a striking 
feature is the large spin-orbit splitting of the 2D~ state which amounts to 
--2042.858 cm -1 experimentally [41]. (The negative sign indicates an inverted 
state with the larger J-value lowest in energy.) Employing 2Dg CAS(s, p) orbitals, 
a first-order spin-orbit splitting of -2006 cm -1 is obtained in the Breit-Pauli 
approximation in excellent agreement with experiment. Second-order contribu- 
tions to the ED e splitting are expected to be small since there are no close-lying 
gerade states with angular momentum J = 2. In the following, we will only 
consider symmetry preserving (kinematical) relativistic effects. 
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The relativistic orbital relaxation has already been discussed in the SCF 
section. Relativistic effects on the CI excitation energies are found by comparing 
the results of the nonrelativistic and the no-pair calculations which are given in 
Tables 4 and 6, respectively. The relativistic correction to the excitation energy of 
a given state is found to be nearly constant within the no-pair approximation, 
irrespective of the particular one-particle basis employed. This is especially 
noteworthy since in a first-order perturbation approach using the MVD operator 
the argon core, usually frozen in the correlation treatment, makes important 
contributions to the excitation energies. A detailed analysis of the orbital 
expectation values of the MVD operator for both 2Sg and 2Dg states (Table 7) 
shows that the 3s and 3p orbitals contribute 0.22 eV to the MVD correction, 
about half of the total MVD correction. The differential effect due to the core 
electrons is lost in this treatment, of course, if the correlation calculation is 
performed in a common set of orbital basis or if frozen core orbitals are 
employed. This is demonstrated by an MCPF treatment in the basis of SCF 
orbitals optimized under the constraint that the argon core was kept frozen to a 
2Sg3Dg average. Although the nonrelativistic excitation energy is not altered in 
these calculations (Table 3), the first-order MVD correction has shrunk to 
-0.27 eV, compared to -0.46 eV if no constraints are imposed. The corre- 
sponding relativistic energy shift in the no-pair calculations amounts to 0.42- 
0.43 eV. 

The relativistic effect on the 2Dg excitation energy is by far the largest for all 
states considered. The 2P u (dl°p ~) state is shifted upwards since the relativistic 
increase in energy is generally smaller in an np shell compared to ns. The shift 
amounts to 0.14 eV in AO basis A and is slightly larger (0.18 eV) in AO basis B 
which contains an optimized 4p gaussian for this stage. The d9slp I states are 
consistently stabilized by 0~2-0.3 eV with respect to the ground state possessing 
also one s electron but fewer p electrons. Finally, the calculated ionization energy 
of copper is increased relativistically by 0.2 eV, a value also obtained in first- 
order MVD calculations [ 13]. 

As stated above, the relativistic effect on the excitation energy of a particular 
state is almost constant for all one-particle bases tested. This is not true, 
however, for the averaged NOs. While the differential relativistic decrease of the 
2Dg-2Sg splitting is reproduced well also in the NO basis, the effects on the states 

Table 7. Orbital contributions to the M VD correction to the 2Sg (dl°sl)-ZDg (dgs 2) energy 
separation 

Orbital EMvo(2Sg) [ E ~ q ]  EMvo(ZSg) [Eul  AE leVI 

ls  8.8060 8.8056 +0.01 
2s 2.2114 2.2111 + 0.01 
2p 2.4134 2.4128 +0.02 
3s 0.3478 0.3520 -- 0.11 
3p 0.3646 0.3701 - 0 . 1 5  
Core 
3d 0.0729 0.0721 + 0.02 
4s 0.0069 0.0167 - 0.26 
Valence 
Sum 

- 0 . 2 2  eV 

--0.24 eV 
-- 0.46 eV 



Relativistic treatment of excited electronic states of atomic copper 389 

with occupied 4p orbitals are erratic. This stems most probably from the fact 
that the p NOs are 4s correlating orbitals and are not well suited to describe a 
spectroscopic 4p orbital. 

4. Conclusions 

Summarizing our results, we find that the approximate form of the no-pair 
operator used in this work and its evaluation via a matrix representation in 
momentum space leads to an orbital description which agrees satisfactorily with 
those obtained from spin-averaged Dirac-Fock theory. The nonrelativistically 
optimized 15sl lp6d basis set is flexible enough to describe also the orbitals in 
our relativistic treatment. AO basis set contraction errors in the no-pair calcula- 
tions are found to be of the same size as those in the nonrelativistic treatment. 

At the CI level including Davidson correction, the calculated relativistic 
excitation energy of the 2Dg atomic state differs from experiment by as much as 
0.48 eV if the ground state is treated in the basis of its SCF orbitals and for 2Dg 
only 4s 2 ~4p  2 excitations are accounted for in the CASSCF procedure. Inclu- 
sion of 3d radial correlation in the orbital optimization step improves the 
excitation energy substantially, but still the experimental value is underestimated 
by 0.27 eV. Similar results have been obtained previously also for the dSs2-d9s 1 
separation in atomic nickel [44]. The best compromise to describe the 2Sg (d~°s ~), 
2Og (d9s2), 2pu (dlOp l), 2.4{F ' P}u (d9slp l), and 1Sg (d ~°) state of neutral and ionic 
copper in a common set of one-particle basis is to use  d 9 orbitals with 
near-degeneracy effects accounted for in the orbital optimization step. The 
2Sg-ZDg separation obtained in this orbital basis (0.30eV) is only slightly 
inferior to our best result. The excitation energies of the higher lying d9s 1171 
states and the first ionization potential agree with experiment to within 0.2 eV. In 
addition to the 4p-polarization functions commonly used in studies of copper 
compounds, the dl°p ~ state needs at least one diffuse p function. 

In the no-pair approximation, differential relativistic effects are found to be 
nearly independent of the one-particle basis employed. This makes it possible to 
employ a frozen argon core in the variational calculations in contrast to 
mass-velocity and Darwin first-order perturbation treatments, for which the 3s 
and 3p core electrons contribute considerably to the relativistic change in the 
excitation energies. The Breit-Pauli form of the spin-orbit operator is still a 
good approximation for third row elements. The first-order spin-orbit splitting of 
the 2Dg state ( -2006cm -~) is in excellent agreement with the experimental 
value. 
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